Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1151515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064179

RESUMO

Objectives: Virtual reality (VR) offers an ecological setting and the possibility of altered visual feedback during head movements useful for vestibular research and treatment of vestibular disorders. There is however no data quantifying vestibulo-ocular reflex (VOR) during head impulse test (HIT) in VR. The main objective of this study is to assess the feasibility and performance of eye and head movement measurements of healthy subjects in a VR environment during high velocity horizontal head rotation (VR-HIT) under a normal visual feedback condition. The secondary objective is to establish the feasibility of VR-HIT recordings in the same group of normal subjects but under altered visual feedback conditions. Design: Twelve healthy subjects underwent video HIT using both a standard setup (vHIT) and VR-HIT. In VR, eye and head positions were recorded by using, respectively, an imbedded eye tracker and an infrared motion tracker. Subjects were tested under four conditions, one reproducing normal visual feedback and three simulating an altered gain or direction of visual feedback. During these three altered conditions the movement of the visual scene relative to the head movement was decreased in amplitude by 50% (half), was nullified (freeze) or was inverted in direction (inverse). Results: Eye and head motion recording during normal visual feedback as well as during all 3 altered conditions was successful. There was no significant difference in VOR gain in VR-HIT between normal, half, freeze and inverse conditions. In the normal condition, VOR gain was significantly but slightly (by 3%) different for VR-HIT and vHIT. Duration and amplitude of head impulses were significantly greater in VR-HIT than in vHIT. In all three altered VR-HIT conditions, covert saccades were present in approximatively one out of four trials. Conclusion: Our VR setup allowed high quality recording of eye and head data during head impulse test under normal and altered visual feedback conditions. This setup could be used to investigate compensation mechanisms in vestibular hypofunction, to elicit adaptation of VOR in ecological settings or to allow objective evaluation of VR-based vestibular rehabilitation.

2.
Eur Arch Otorhinolaryngol ; 280(8): 3661-3672, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36905419

RESUMO

BACKGROUND AND PURPOSE: Use of unilateral cochlear implant (UCI) is associated with limited spatial hearing skills. Evidence that training these abilities in UCI user is possible remains limited. In this study, we assessed whether a Spatial training based on hand-reaching to sounds performed in virtual reality improves spatial hearing abilities in UCI users METHODS: Using a crossover randomized clinical trial, we compared the effects of a Spatial training protocol with those of a Non-Spatial control training. We tested 17 UCI users in a head-pointing to sound task and in an audio-visual attention orienting task, before and after each training.
Study is recorded in clinicaltrials.gov (NCT04183348). RESULTS: During the Spatial VR training, sound localization errors in azimuth decreased. Moreover, when comparing head-pointing to sounds before vs. after training, localization errors decreased after the Spatial more than the control training. No training effects emerged in the audio-visual attention orienting task. CONCLUSIONS: Our results showed that sound localization in UCI users improves during a Spatial training, with benefits that extend also to a non-trained sound localization task (generalization). These findings have potentials for novel rehabilitation procedures in clinical contexts.


Assuntos
Implante Coclear , Implantes Cocleares , Localização de Som , Percepção da Fala , Humanos , Audição , Implante Coclear/métodos , Testes Auditivos/métodos
3.
J Clin Med ; 12(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36983357

RESUMO

Unilateral hearing loss (UHL) leads to an alteration of binaural cues resulting in a significant increment of spatial errors in the horizontal plane. In this study, nineteen patients with UHL were recruited and randomized in a cross-over design into two groups; a first group (n = 9) that received spatial audiovisual training in the first session and a non-spatial audiovisual training in the second session (2 to 4 weeks after the first session). A second group (n = 10) received the same training in the opposite order (non-spatial and then spatial). A sound localization test using head-pointing (LOCATEST) was completed prior to and following each training session. The results showed a significant decrease in head-pointing localization errors after spatial training for group 1 (24.85° ± 15.8° vs. 16.17° ± 11.28°; p < 0.001). The number of head movements during the spatial training for the 19 participants did not change (p = 0.79); nonetheless, the hand-pointing errors and reaction times significantly decreased at the end of the spatial training (p < 0.001). This study suggests that audiovisual spatial training can improve and induce spatial adaptation to a monaural deficit through the optimization of effective head movements. Virtual reality systems are relevant tools that can be used in clinics to develop training programs for patients with hearing impairments.

4.
Ear Hear ; 44(1): 61-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35943235

RESUMO

OBJECTIVE: The aim of this study was to evaluate the feasibility of a virtual reality-based spatial hearing training protocol in bilateral cochlear implant (CI) users and to provide pilot data on the impact of this training on different qualities of hearing. DESIGN: Twelve bilateral CI adults aged between 19 and 69 followed an intensive 10-week rehabilitation program comprised eight virtual reality training sessions (two per week) interspersed with several evaluation sessions (2 weeks before training started, after four and eight training sessions, and 1 month after the end of training). During each 45-minute training session, participants localized a sound source whose position varied in azimuth and/or in elevation. At the start of each trial, CI users received no information about sound location, but after each response, feedback was given to enable error correction. Participants were divided into two groups: a multisensory feedback group (audiovisual spatial cue) and an unisensory group (visual spatial cue) who only received feedback in a wholly intact sensory modality. Training benefits were measured at each evaluation point using three tests: 3D sound localization in virtual reality, the French Matrix test, and the Speech, Spatial and other Qualities of Hearing questionnaire. RESULTS: The training was well accepted and all participants attended the whole rehabilitation program. Four training sessions spread across 2 weeks were insufficient to induce significant performance changes, whereas performance on all three tests improved after eight training sessions. Front-back confusions decreased from 32% to 14.1% ( p = 0.017); speech recognition threshold score from 1.5 dB to -0.7 dB signal-to-noise ratio ( p = 0.029) and eight CI users successfully achieved a negative signal-to-noise ratio. One month after the end of structured training, these performance improvements were still present, and quality of life was significantly improved for both self-reports of sound localization (from 5.3 to 6.7, p = 0.015) and speech understanding (from 5.2 to 5.9, p = 0.048). CONCLUSIONS: This pilot study shows the feasibility and potential clinical relevance of this type of intervention involving a sensorial immersive environment and could pave the way for more systematic rehabilitation programs after cochlear implantation.


Assuntos
Implante Coclear , Implantes Cocleares , Localização de Som , Percepção da Fala , Adulto , Humanos , Recém-Nascido , Implante Coclear/métodos , Projetos Piloto , Qualidade de Vida , Percepção da Fala/fisiologia , Audição/fisiologia
5.
Ear Hear ; 44(1): 189-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35982520

RESUMO

OBJECTIVES: We assessed if spatial hearing training improves sound localization in bilateral cochlear implant (BCI) users and whether its benefits can generalize to untrained sound localization tasks. DESIGN: In 20 BCI users, we assessed the effects of two training procedures (spatial versus nonspatial control training) on two different tasks performed before and after training (head-pointing to sound and audiovisual attention orienting). In the spatial training, participants identified sound position by reaching toward the sound sources with their hand. In the nonspatial training, comparable reaching movements served to identify sound amplitude modulations. A crossover randomized design allowed comparison of training procedures within the same participants. Spontaneous head movements while listening to the sounds were allowed and tracked to correlate them with localization performance. RESULTS: During spatial training, BCI users reduced their sound localization errors in azimuth and adapted their spontaneous head movements as a function of sound eccentricity. These effects generalized to the head-pointing sound localization task, as revealed by greater reduction of sound localization error in azimuth and more accurate first head-orienting response, as compared to the control nonspatial training. BCI users benefited from auditory spatial cues for orienting visual attention, but the spatial training did not enhance this multisensory attention ability. CONCLUSIONS: Sound localization in BCI users improves with spatial reaching-to-sound training, with benefits to a nontrained sound localization task. These findings pave the way to novel rehabilitation procedures in clinical contexts.


Assuntos
Implante Coclear , Implantes Cocleares , Localização de Som , Humanos , Percepção Auditiva/fisiologia , Implante Coclear/métodos , Audição/fisiologia , Testes Auditivos/métodos , Localização de Som/fisiologia , Estudos Cross-Over
6.
Front Hum Neurosci ; 16: 1026056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310849

RESUMO

Moving the head while a sound is playing improves its localization in human listeners, in children and adults, with or without hearing problems. It remains to be ascertained if this benefit can also extend to aging adults with hearing-loss, a population in which spatial hearing difficulties are often documented and intervention solutions are scant. Here we examined performance of elderly adults (61-82 years old) with symmetrical or asymmetrical age-related hearing-loss, while they localized sounds with their head fixed or free to move. Using motion-tracking in combination with free-field sound delivery in visual virtual reality, we tested participants in two auditory spatial tasks: front-back discrimination and 3D sound localization in front space. Front-back discrimination was easier for participants with symmetrical compared to asymmetrical hearing-loss, yet both groups reduced their front-back errors when head-movements were allowed. In 3D sound localization, free head-movements reduced errors in the horizontal dimension and in a composite measure that computed errors in 3D space. Errors in 3D space improved for participants with asymmetrical hearing-impairment when the head was free to move. These preliminary findings extend to aging adults with hearing-loss the literature on the advantage of head-movements on sound localization, and suggest that the disparity of auditory cues at the two ears can modulate this benefit. These results point to the possibility of taking advantage of self-regulation strategies and active behavior when promoting spatial hearing skills.

7.
PLoS One ; 17(4): e0263509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421095

RESUMO

Localising sounds means having the ability to process auditory cues deriving from the interplay among sound waves, the head and the ears. When auditory cues change because of temporary or permanent hearing loss, sound localization becomes difficult and uncertain. The brain can adapt to altered auditory cues throughout life and multisensory training can promote the relearning of spatial hearing skills. Here, we study the training potentials of sound-oriented motor behaviour to test if a training based on manual actions toward sounds can learning effects that generalize to different auditory spatial tasks. We assessed spatial hearing relearning in normal hearing adults with a plugged ear by using visual virtual reality and body motion tracking. Participants performed two auditory tasks that entail explicit and implicit processing of sound position (head-pointing sound localization and audio-visual attention cueing, respectively), before and after having received a spatial training session in which they identified sound position by reaching to auditory sources nearby. Using a crossover design, the effects of the above-mentioned spatial training were compared to a control condition involving the same physical stimuli, but different task demands (i.e., a non-spatial discrimination of amplitude modulations in the sound). According to our findings, spatial hearing in one-ear plugged participants improved more after reaching to sound trainings rather than in the control condition. Training by reaching also modified head-movement behaviour during listening. Crucially, the improvements observed during training generalize also to a different sound localization task, possibly as a consequence of acquired and novel head-movement strategies.


Assuntos
Sinais (Psicologia) , Localização de Som , Estimulação Acústica , Adaptação Fisiológica , Adulto , Percepção Auditiva , Estudos Cross-Over , Audição , Humanos
8.
Ear Hear ; 43(1): 192-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34225320

RESUMO

OBJECTIVES: The aim of this study was to assess three-dimensional (3D) spatial hearing abilities in reaching space of children and adolescents fitted with bilateral cochlear implants (BCI). The study also investigated the impact of spontaneous head movements on sound localization abilities. DESIGN: BCI children (N = 18, aged between 8 and 17) and age-matched normal-hearing (NH) controls (N = 18) took part in the study. Tests were performed using immersive virtual reality equipment that allowed control over visual information and initial eye position, as well as real-time 3D motion tracking of head and hand position with subcentimeter accuracy. The experiment exploited these technical features to achieve trial-by-trial exact positioning in head-centered coordinates of a single loudspeaker used for real, near-field sound delivery, which was reproducible across trials and participants. Using this novel approach, broadband sounds were delivered at different azimuths within the participants' arm length, in front and back space, at two different distances from their heads. Continuous head-monitoring allowed us to compare two listening conditions: "head immobile" (no head movements allowed) and "head moving" (spontaneous head movements allowed). Sound localization performance was assessed by computing the mean 3D error (i.e. the difference in space between the X-Y-Z position of the loudspeaker and the participant's final hand position used to indicate the localization of the sound's source), as well as the percentage of front-back and left-right confusions in azimuth, and the discriminability between two nearby distances. Several clinical factors (i.e. age at test, interimplant interval, and duration of binaural experience) were also correlated with the mean 3D error. Finally, the Speech Spatial and Qualities of Hearing Scale was administered to BCI participants and their parents. RESULTS: Although BCI participants distinguished well between left and right sound sources, near-field spatial hearing remained challenging, particularly under the " head immobile" condition. Without visual priors of the sound position, response accuracy was lower than that of their NH peers, as evidenced by the mean 3D error (BCI: 55 cm, NH: 24 cm, p = 0.008). The BCI group mainly pointed along the interaural axis, corresponding to the position of their CI microphones. This led to important front-back confusions (44.6%). Distance discrimination also remained challenging for BCI users, mostly due to sound compression applied by their processor. Notably, BCI users benefitted from head movements under the "head moving" condition, with a significant decrease of the 3D error when pointing to front targets (p < 0.001). Interimplant interval was correlated with 3D error (p < 0.001), whereas no correlation with self-assessment of spatial hearing difficulties emerged (p = 0.9). CONCLUSIONS: In reaching space, BCI children and adolescents are able to extract enough auditory cues to discriminate sound side. However, without any visual cues or spontaneous head movements during sound emission, their localization abilities are substantially impaired for front-back and distance discrimination. Exploring the environment with head movements was a valuable strategy for improving sound localization within individuals with different clinical backgrounds. These novel findings could prompt new perspectives to better understand sound localization maturation in BCI children, and more broadly in patients with hearing loss.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva , Localização de Som , Percepção da Fala , Adolescente , Criança , Implante Coclear/métodos , Movimentos da Cabeça , Audição , Humanos
9.
Front Psychol ; 11: 510787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192759

RESUMO

Previous research using immersive virtual reality (VR) has shown that after a short period of embodiment by White people in a Black virtual body, their implicit racial bias against Black people diminishes. Here we tested the effects of some socio-cognitive variables that could contribute to enhancing or reducing the implicit racial bias. The first aim of the study was to assess the beneficial effects of cooperation within a VR scenario, the second aim was to provide preliminary testing of the hypothesis that empathy and political attitudes could contribute to implicit bias about race, while the third aim was to explore the relationship between political attitudes and empathy. We had (Caucasian) participants embodied in a Black virtual body and engaged either in a cooperative (Coop group) or in a non-cooperative (Neutral group) activity with a confederate experimenter embodying another Black avatar. Before and after VR, we measured participants' implicit racial bias by means of Implicit Association Test (IAT) and their perceived closeness toward the confederate experimenter. Before VR we also assessed participants' political attitudes and empathy traits. Results revealed that, as compared to the Neutral group, the Coop group showed lower IAT scores after the social interaction. Interestingly, in the Neutral but not the Coop group the perceived closeness toward the confederate experimenter was associated with the initial racial bias: the more the participants reduced their distance, the more they reduced their IAT score. Moreover, reported traits of empathy and political attitudes significantly explained the variance observed in the initial implicit bias, with perspective-taking, empathic concern, and personal distress being significant predictors of the IAT scores. Finally, there was a relationship between political attitudes and empathy: the more participants considered themselves as left-wing voters, the higher their perspective-taking and empathic concern scores. We discuss these findings within the neuroscientific and social cognition field and encourage scholars from different domains to further explore whether and under which conditions a given manipulation for reducing racial bias could be efficiently transposed in VR.

10.
Neuropsychologia ; 149: 107665, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130161

RESUMO

When localising sounds in space the brain relies on internal models that specify the correspondence between the auditory input reaching the ears, initial head-position and coordinates in external space. These models can be updated throughout life, setting the basis for re-learning spatial hearing abilities in adulthood. In addition, strategic behavioural adjustments allow people to quickly adapt to atypical listening situations. Until recently, the potential role of dynamic listening, involving head-movements or reaching to sounds, have remained largely overlooked. Here, we exploited visual virtual reality (VR) and real-time kinematic tracking, to study the role of active multisensory-motor interactions when hearing individuals adapt to altered binaural cues (one ear plugged and muffed). Participants were immersed in a VR scenario showing 17 virtual speakers at ear-level. In each trial, they heard a sound delivered from a real speaker aligned with one of the virtual ones and were instructed to either reach-to-touch the perceived sound source (Reaching group), or read the label associated with the speaker (Naming group). Participants were free to move their heads during the task and received audio-visual feedback on their performance. Most importantly, they performed the task under binaural or monaural listening. Results show that both groups adapted rapidly to monaural listening, improving sound localisation performance across trials and changing their head-movement behaviour. Reaching the sounds induced faster and larger sound localisation improvements, compared to just naming its position. This benefit was linked to progressively wider head-movements to explore auditory space, selectively in the Reaching group. In conclusion, reaching to sounds in an immersive visual VR context proved most effective for adapting to altered binaural listening. Head-movements played an important role in adaptation, pointing to the importance of dynamic listening when implementing training protocols for improving spatial hearing.


Assuntos
Localização de Som , Realidade Virtual , Adaptação Fisiológica , Adulto , Sinais (Psicologia) , Audição , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...